LES DÉCIMAUX: CONTINUITÉS ET RUPTURES AVEC LES APPRENTISSAGES ANTÉRIEURS

Lucie DeBlois

Professeure chercheure

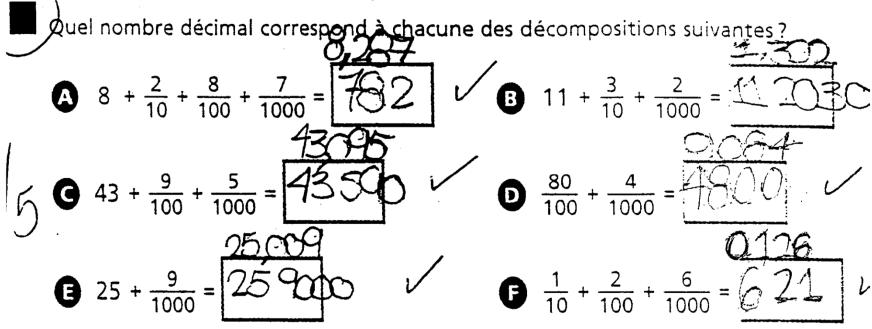
Université Laval, Québec (QC) Canada

PLAN

- 1. Les erreurs d'hier à aujourd'hui
- 2. Voir autrement
 - 1. Quelques caractéristiques des décimaux
 - 2. Ruptures
 - 3. Continuités
- 3. Intervenir
 - 1. Les manuels et les pratiques habituelles
 - 2. Les préoccupations des enseignants
 - Des conditions à mettre en œuvre
- 4. Interpréter les erreurs des élèves
 - 1. Quelles connaissances laissent-elles voir?
 - 2. Un système à considérer

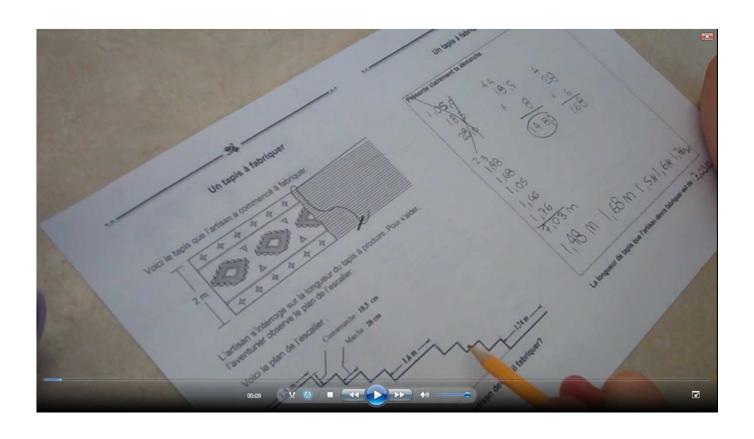
LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

En 1973, Erlwanger observait que Benny construisait un grand nombre de règles pour transformer les fractions en décimaux ou pour opérer sur les décimaux.


-9/10 = 1,9, en expliquant:

«Le point décimal signifie que c'est divisé (c'est-à-dire séparer en deux parts ... vous pouvez prendre un 9, cela fait 19 et dedans il y a 1,9, la décimale qui montre combien de dix et combien de centaines ou autres».

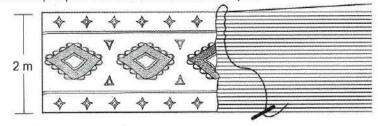
- Cette règle est transférée
 - -429/100 = 5,29
 - -3/1000 = 1,003


LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

En 2003, les élèves assimilent les dizaines aux dixièmes, les centaines aux centièmes, etc.

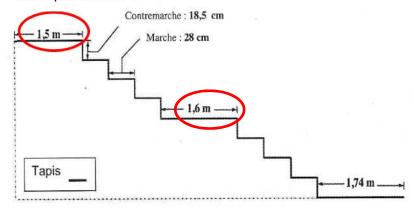
@ 2003, Les Editions CEO no. · Reproduction interdit

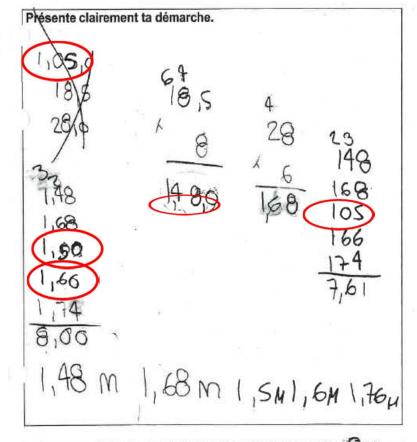
LES PÉCIMAUX VUS COMME UN ENSEMBLE PE RÈGLES


LES PÉCIMAUX YUS COMME UN ENSEMBLE RE BÈGLES

L'interprétation du zéro chez un élève de 13 ans

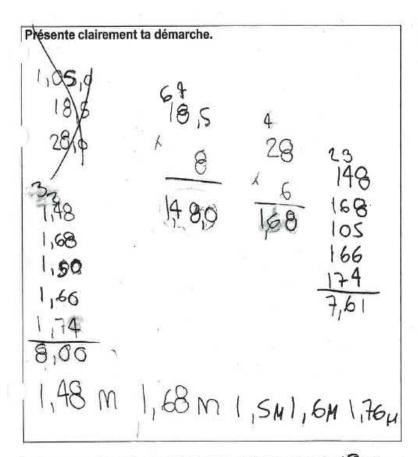
Un tapis à fabriquer


Un tapis à fabriquer


Voici le tapis que l'artisan a commencé à fabriquer.

L'artisan s'interroge sur la longueur du tapis à produire. Pour s'aider, l'aventurier observe le plan de l'escalier.

Voici le plan de l'escalier :


La longueur de tapis que l'artisan devra fabriquer est de :

Quelle longueur de tapis l'artisan devra-t-il fabilique (2017). Les décimaux:

PE BEGLES

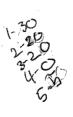
La comparaison des naturels chez ce même un élève

Un tapis à fabriquer

Comme le nombre « 5 » est plus petit que le nombre « 50 », « 1,5 » et « 1,50 » ne sont pas égaux. (vid1 : 8m47s @8m54s)

Par contre, « 1,05 » (un virgule zéro cinq) est égal à « 1,5 » (un virgule cinq), car les nombres après la virgule sont les mêmes. (vid1 : 8m56s @ 9m34s)

La longueur de tapis que l'artisan devra fabriquer est de :

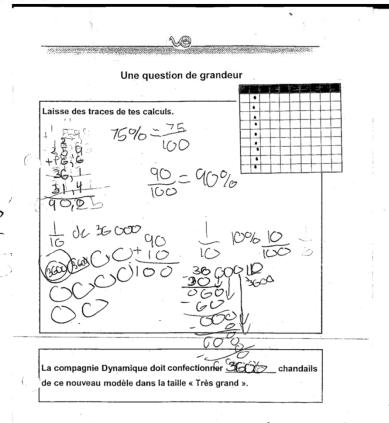

DeBlois, Lucie (2017). Les décimaux: continuités et ruptures avec les apprentissages antérieures.

LES RÉCIMAUX YUS COMME UN ENSEMBLE

L'alignement de la virgule

Une question de grandeur

La compagnie Dynamique confectionne des chandails de sport. Pour répondre à la demande du marché, elle confectionne chacun de ses modèles dans différentes grandeurs. Voici un tableau représentant le pourcentage du nombre de chandails de chaque grandeur.



Grandeur	Grandeur Pourcentage du nombre de chandails confectionné	
Très petit	5,9 %	
Petit	16,6%	
Moyen,	36.7%	
Grand	31.4%	
Très grand	Le reste de la production	IC

Dans quelques semaines, la compagnie Dynamique mettra sur le marché son tout dernier modèle de chandail. Au total, 36 000 chandails de ce modèle doivent être confectionnés.

Combien de chandails de ce nouveau modèle la compagnie Dynamique doit-elle confectionner dans la taille « Très grand »?

DeBlois, Lucie (2017). Les décimaux: continuités et ruptures avec les apprentissages antérieures.

première production

5,9

16,6

36,1

<u>31,4</u>

0,900

LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

La multiplication assimilée à l'addition

Cycle\ règle	Règles des élèves concernant la multiplication	Médiation
3 ^e cycle	12 x 1,38 = 12,38 (12.21.05.2013)	ME: Peux-tu m'expliquer comment tu as fait ta multiplication svp? Élève: Bien, 12x1 c'est 12 ME: Ouais Élève: Pis bien on ajoute le 38 donc ça fait 12,38 parce que au début c'est un chiffre rond. (Extrait 06.26.03_2013 vidéo: 5m37s à 5m49s)

LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

La multiplication assimilée à l'addition

Cycle\	Règles des élèves concernant la	Médiation
règle	multiplication	
3 ^e cycle		Si on fait 90 [80x10=90] + 1000
	10 x 98 = 1090	[90x10=1000] égale 1090
		(03.14_02_2013)

LES DÉCIMAUX VUS COMME UN ENSEMBLE DE BÈGLES

- Brown, et al., (1988) observaient des difficultés jusqu'à la fin d'une scolarité
 - La «transformation» des nombres décimaux en pourcentage et vice-versa provoque le plus d'erreurs, particulièrement lorsque les pourcentages sont plus petits que 10.

LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

Les règles...

- ... sont contextualisées
- ... sont élaborées par les élèves le plus souvent implicitement
- ... alimentent :
 - La façon dont les élèves pensent que les connaissances s'articulent dans une tâche
 - Le rôle qu'ils croient devoir jouer
 - Le rôle auquel ils s'attendent de l'enseignant

LES DÉCIMAUX VUS COMME UN ENSEMBLE DE RÈGLES

Un concept se forme sur une longue période (plusieurs années pour le concept de décimal). Il ne s'élabore pas isolément mais en relation avec d'autres concepts » (R. Douady, 1980).

Il s'appuie sur les connaissances des élèves.

VOIR AUTREMENT

Les décimaux...

... considérés comme une extension des naturels: une illusion de facilité?

LES FONCTIONS DES NOMBRES

Une extension des savoirs

 Le nouvel ensemble (D) englobe le précédent (N). Il y a plus de décimaux que de naturels.

Les décimaux contribuent à la mesure du continu

 L'addition des décimaux est, comme celle des naturels, commutative, associative, etc.

ORIGINES POSSIBLES DES ERREURS

Des ruptures

- La quantité de chiffres dans l'écriture des nombres décimaux ne permet plus leur comparaison.
- Le produit est plus grand que le multiplicande et le multiplicateur
- L'addition répétée ne permet pas la multiplication des décimaux
- Le quotient est plus petit que le dividende pour D 1
- Le rôle du 0 intercalaire
- Chaque naturel possède un successeur immédiat...pas les décimaux

LES FONCTIONS DES NOMBRES

continuités et ruptures avec les

apprentissages antérieures.

Les naturels

- Les nombres servent à exprimer des quantités
- Les nombres servent à ordonner et à calculer

Les décimaux

- Les décimaux servent à exprimer des mesures de grandeurs, à désigner, à ordonner et à calculer
- L'écriture des décimaux (Roditi, 2003)
 - comme quotients pour répondre à des problèmes de mesure ou de relations fonctionnelles
 - Comme somme pour répondre aux besoins de repérage sur une droite numérique
- Comme produit pour exprimer une DeBlois, Lucie (2017). Les décimamesure de longueur

ORIGINES POSSIBLES DES ERREURS

les élèves interrogés auraient peu de représentations disponibles pour les petites fractions et pour les nombres décimaux. La représentation sous forme de longueurs ne serait pas spontanée et elle n'apparaîtrait que dans les classes où il y a eu un apprentissage spécifique (Perrin-Glorian, 1996:23).

ORIGINES POSSIBLES DES ERREURS

- Le nombre se construit, dans une dialectique ordinale /cardinale. La représentation par l'écriture à virgule se construit dans une dialectique valeur exacte / valeur approchée (Roditi,)
- Certains apprentissages portant sur la numération deviennent un obstacle lors du passage aux nombres décimaux.

LA NATURE DES OBSTACLES

1. Obstacles d'origine épistémologique où le nombre décimal brise les règles de fonctionnement habituelles.

Exige un saut conceptuel qu'on retrouverait dans l'histoire du concept (Vergnaud, 1991)

la multiplication comme addition répétée ne fonctionne plus

 $0,1 \times 0,1 = 0,01$

 $3 \div 6$ ou encore $3 \div 0.6$

LA NATURE RES OBSTACLES

Développement de la compréhension de la numération et des décimaux				
Composante	Composante	Composante	Composante	
Intuitive	procédurale	Abstraite	Formelle	
Reconnaissance de l'existence et du caractère commode des groupements	Établir une correspondance terme à terme Dénombrer une quantité	Reconnaître l'inclusion des unités de mesure de quantité Reconnaître l'équivalence entre les unités de mesure de quantité Reconnaît la régularité de la base dix	L'élève écrit, ordonne des nombres, calcule	
Reconnaissance de l'égalité des parties dans le partage	Superposer une longueur	Reconnaît la réversibilité du fractionnement par le retour à l'unité de	Le nombre décimal est une extension du	
d'un tout ou d'un ensemble	Séparer en parties égales par pliage par découpage en reportant une unité- étalone Blois, Lucie (2	référence Reconnaît l'équivalence de plusieurs représentations pour une même valeur	nombre naturel	

LA NATURE DES OBSTACLES

2. Obstacle d'origine didactique donc, peut être influencé par une transformation des pratiques d'enseignement

Contrat didactique (le rôle attribué au zéro dans 1,5)

Matériel (la monnaie n'a pas de groupement exclusivement par 10)

Caractéristiques de la tâche (la mesure d'une longueur en m et en cm juxtaposée)

Ordre de présentation des contenus mathématiques (naturels avant les décimaux)

Quelques trucs pour favoriser la réussite (Les règle selon laquelle « on déplace la virgule d'un chiffre » pour multiplier et diviser par 10, ou de deux chiffres pour multiplier ou diviser par 100, ne permet pas de justifier que $0,1 \times 0,1 = 0,01$, un nombre plus petit que chacun des termes)

S'INTÉRESSER AUX ATTENTES QUE LES ÉLÈVES ENTRETIENNENT À L'ÉGARD DE LA TÂCHE

Poser des hypothèses à l'égard des règles et des habitudes des élèves afin de les mettre à l'épreuve pour en reconnaître les limites et de dénouer l'impasse dans laquelle ils se trouvent.

- Règles: une connaissance élaborée par l'élève sur la base de ses observations personnelles.
 - Ex. Les nombres décimaux sont alors considérés comme des «naturels avec une virgule».
- Habitudes: une connaissance élaborée par l'élève sur la base des routines et des règles de la classe
 - Ex. comparer les nombres selon la quantité de chiffres

Des règles et des habitudes générant des contrats

Le contrat pédagogique motive les élèves à répondre:

➤ aux <u>attentes sociales</u>(parents; institution scolaire)

➤au <u>rôle qu'il se donne</u> devant ses camarades

Le contrat didactique permet de comprendre

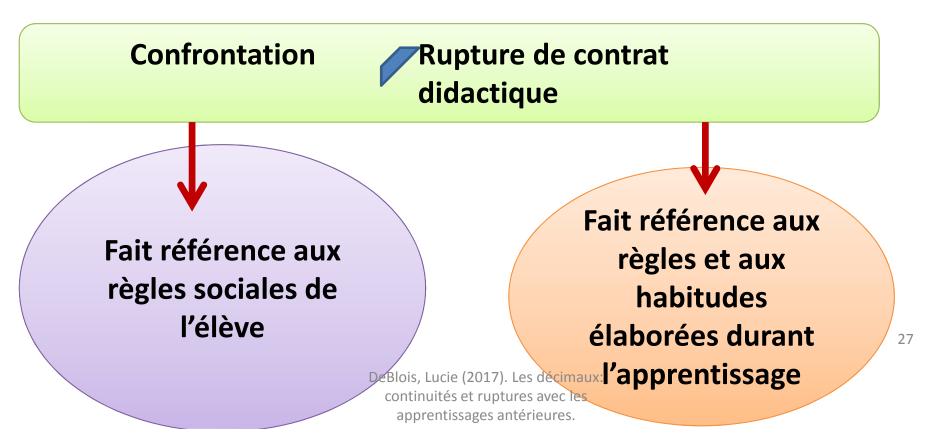
les <u>attentes de l'élève</u> envers l'enseignant

les <u>attentes de</u>
 <u>l'enseignant envers</u>
 l'élève

➢ le rôle que l'élève se donne devant <u>la tâche</u>

Distinguer...

Contrat pédagogique


- Générique à la vie d'élève
- Des règles de fonctionnement sont explicitement exposées en classe

Contrat didactique

- Contextualisé à la tâche à réaliser
- Des règles implicites sont élaborées par les élèves et inconnues de l'enseignant
- Les apprentissages cognitifs exigent de remettre en question ce qui est connu.

POURQUOI S'INTÉRESSER AUX ATTENTES QUE LES ÉLÈVES ENTRETIENNENT À L'ÉGARD DE LA TÂCHE

La situation d'enseignement pose le processus de communication sur une réciprocité des attentes

S'INTÉRESSER AUX ATTENTES QUE LES ÉLÈVES ENTRETIENNENT À L'ÉGARD DE LA TÂCHE

Utiliser le savoir comme tremplin de l'échange plutôt que le comportement social pour contourner la confrontation entre les deux partenaires et diriger l'attention sur la tâche à réaliser.

conduit à ajouter, à son éventail d'interventions, des adaptations de nature cognitive.

Ex: L'élève se concentre sur les nombres et leurs particularités

DISTINGUER CONTRAT DIDACTIQUE/CONTRAT PÉDAGOGIQUE

D'AUTRES SOURCES D'ERREURS

Le climat de la classe

- La nature des interactions enseignants-élèves (Potvin et al., 2005, Giroux et René de Cotret, 2005)
 - Ex. Le même enseignant dans une classe de doubleurs
- Le manque de ressources mises à la disposition de l'élève et qui peut avoir comme effet de compromettre l'égalité des chances et de succès (Deniger, 2005)
- La formation des enseignants (Royer, 2005)

D'AUTRES SOURCES D'ERREURS

Les caractéristiques de l'apprenant

- la représentation de son rôle comme élève qui fait des math... (rapport aux savoirs)
- facteurs de risques individuels (dépression, dévalorisation), contextuels (isolement, condition socio-économique) et relationnels (distorsions cognitives) (Marcotte, 2005)
- origine ontogénique (développement de l'enfant tel invariance de la pluralité (Piaget et ses coll.) vs opportunités
- limites des capacités dans le domaine du traitement de l'information TDAH (Couture, 2005)

LA NATURE DES OBSTACLES

Les rôles que l'élève s'attribue (Dencuff, 2010)

- Enfant: acteur social, habitudes familiales...
- Élève: conformité aux règles scolaires, aux routines de classe...
- Apprenti: engagement dans la tâche pour transformer ses connaissances en savoirs mathématiques ellois, Lucie (2017). Les décimaux: continuités et ruptures avec les

LA NATURE DES OBSTACLES

Une recherche DeBlois, 2015) a montré que:

- Le rôle d'enfant
 - Évitement, anxiété, agitation
- Le rôle d'élève entretenu par:
 - Des effets de contrat (Topaze, paradoxe du comédien)
 - Par des habitudes
- Le rôle d'apprenti émerge
 - Lors du choix d'une opération
 - Lors du choix d'une procédure (proportion par procédure linéaire)
 - Lors d'un essai même erroné
 - Lors de la justification des choix faits

D'AUTRES SOURCES D'ERREURS: OBSTACLE LIÉ AU RAPPORT AUX SAVOIRS

	Rapport épistémique	Rapport social	Rapport identitaire
1 ^{er} cycle	Recherche de régularités de surface conduisant à un rapport de type instrumental	Recherche de conformité Il faut absolument répondre aux questions de l'enseignante	
2 ^e cycle	Recherche de régularités de surface conduisant à un rapport de type instrumental	Recherche de conformité La réponse de l'enseignante est incontestable; Il faut utiliser la méthode de travail ou la procédure présentée par l'enseignante;	2 élèves se disent «pas capables»
3e cycle 26-09-2017	Recherche de régularités de surface conduisant à un rapport de type instrumental Recherche de relations conduisant à un rapport de type émancipatoi eBlois, Lucie (20 continuités et	Il faut utiliser la méthode de travail ou la procédure présentée par l'enseignante; 017). Les décimaux: ruptures avec les	Se dit paresseux «Je ne comprends rien»

26-09-2017

continuités et ruptures avec les apprentissages antérieures.

LA NATURE DES OBSTACLES

Les élèves plus jeunes évoquent une conception davantage instrumentale des mathématiques (DeBlois, 2008)

- les élèves portent une attention particulière à l'organisation du symbolisme, aux pièges intégrés aux problèmes.
- La résolution de problèmes algébriques est considérée inaccessible (Beaulac et DeBlois, 2007)

INTERVENIR

INTERVENIR SUR LES DÉCIMAUX

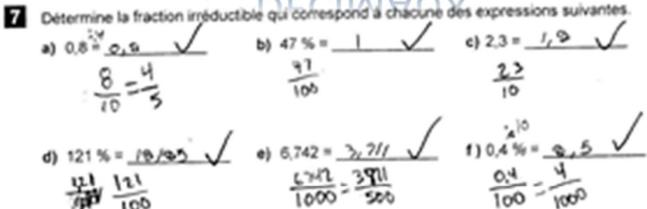
L'analyse des manuels scolaires montre une variété d'approches concernant les nombres décimaux (Grégoire et al., 2010)

- L'étude de 7 manuels auraient montré les tendances suivantes:
 - -une approche numérique;
 - -les mesures de grandeurs;
 - -ces deux domaines complémentaires,
 - -pas de choix explicites mais juxtaposition des activités.

INTERVENIR SUR LES DÉCIMAUX

L'aide à l'apprentissage visant à éviter les erreurs des élèves semblent nourrir les habitudes et les règles élaborées par les élèves

- Une succession de tâches semblables influence la réflexion des élèves
- Le rôle que s'attend de jouer l'élève influence ses procédures


INTERVENIR SUR LES DÉCIMAUX

Grégoire et al. (2010) observent que **certaines situations** renforcent la représentation des nombres décimaux comme étant la juxtaposition de deux nombres:

- La mesure: 15,65m = 15m et 65 cm.
- L'addition est implicite : 4+4/10+3/100=4,43
- Payer 3,45€: c'est donner 3€et 45 centimes d'€.

UNE EXPÉRIENCE D'INTERPRÉTATIONSUR LES

DÉCIMAUX

Ecris chacune des expressions suivantes en notation décimale et en pourcentage. Arrondis au centième.

a)
$$\frac{1}{1} = \frac{0}{0}$$
, $\frac{9}{0} = \frac{9}{0}$, $\frac{9}{0}$

DeBlois, Lucie (2017). Les décimaux: continuités et ruptures avec les apprentissages antérieures.

UNE EXPÉRIENCE D'INTERPRÉTATION SUR LES DÉCIMAUX

Analyse de la situation

- Qu'a-t-il compris de la situation ? Comment faites-vous pour le savoir ? Quelle est la place de cette notion dans le curriculum ?
- Les connaissances utilisées sont adaptées pour quel type de situations ? À quel moment a-t-il appris les connaissances utilisées ?
- Quelles sont les contraintes de l'enseignant au moment de l'émergence de cette erreur ? Quel était le but de l'élève ? Quel était le but de l'enseignant ?
- Qu'a retenu l'élève de cette activité ? Comment faites-vous pour le savoir ?

Préoccupations contribuant à l'interprétation	Sensibilité des enseignants	Interprétations des erreurs	Interventions prévues
Écart entre le résultat obtenu/résultat attendu/statut scolaire de l'élève	Savoirs des programmes d'études (égalité, sens des nombres réels)	Compréhension de l'élève	Cerner les représentations de l'élève
Contexte de la production de l'élève	Enseignement offert (exemple avec des nombres pairs)	Processus de l'élève	Proposer un tableau pour mettre en place des étapes pour transformer un nombre
			Modifier la consigne(remplacer le mot irréductible par transformer)
Réactions des élèves	Affectivité de l'élève	Désir de répondre aux attentes	Considérer le confort de l'élève
Expérimentation et investigation	Représentations de l'élève	Extension de ses connaissances avec les centièmes, la division par 2 pour trouver une fraction irréductible	Contre-exemples, varier les nombres décimaux (dixième, centième, millième, dix millièmes)

UNE EXPÉRIENCE SUR LES DÉCIMAUX: CCURRENCES DES INTERPRÉTATIONS À TRAVERS LES SÉMINAIRES

prod	diagramme	fonction	Opérations sur des expressions algébriques	Chaine d'opération s	Addition de monômes	Total
Enseignement offert	46	31	34	37	39	187
Familiarité des élèves avec la tâche	20	11	5	8		44
Compréhensio n des élèves	18	12	25	48	61	164
Savoirs	11	9	5	19	4	48
Caractéristiqu es de la tâche	4	4	6	10	4	28
Processus des élèves	29	5	9	3		46
Total	128	72	84	209	108	601

UNE EXPÉRIENCE D'INTERPRÉTATION SUR LES DÉCIMAUX

À retenir

Les interprétations modifient le choix des interventions

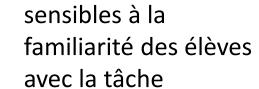
Élargir les possibles en développant de nouvelles sensibilités

Les <u>préoccupations</u> semblent guider la sensibilité manifestée par les enseignants rencontrés

UNE EXPÉRIENCE D'INTERPRÉTATION SUR LES

Interpréter: un processus

Lors des séminaires, les enseignants discutent une variété de procédures d'élèves



sensibles à la compréhension des élèves

sensibles aux savoirs des programmes d'études

L'erreur est interprétée comme une difficulté de lecture, de transcription

L'erreur est interprétée comme une absence de connaissance , une confusion entre des connaissances

L'erreur est interprétée comme un manque d'adaptation des connaissances antérieures à la tâche

26-09-2017

DeBlois, Lucie (2017). Les décimaux: continuités et ruptures avec les apprentissages antérieures.

UNE EXPÉRIENCE D'INTERPRÉTATION SUR LES DÉCIMAUX Interpréter: un processus

Lors des séminaires, les enseignants évoquent les contraintes temporelles

sensibles aux processus d'apprentissage des élèves

L'erreur est interprétée comme une régulation

sensibles aux savoirs des programmes d'études

L'erreur est interprétée comme une absence de connaissance ou une confusion entre des

DeBlois, Lucie (2017). Les décimaux:
continuités et ruptures avec les
apprentissages antérieures.

LA PROBLÉMATIQUE DE L'INTERVENTION DEVANT DES ERREURS (DEBLOIS ET SQUALLI, 2002)

- 1. Préoccupé par les résultats scolaires (explications)
- Préoccupé par la personne (essais-erreurs)
- 3. Préoccupé par la procédure (modelage)
- 4. Préoccupé par la formalisation (repréciser l'écriture)
- 5. Préoccupé par le vocabulaire (mots sans les relations)
- 6. Préoccupé par le développement logico-mathématique de l'élève (représentations, procédures, prises de conscience)

D'OÙ VIENNENT LES PRÉOCCUPATIONS DES ENSEIGNANTS

- La logique professionnelle
- Les contraintes du milieu scolaire

La théorie de l'activité d'Engeström pourrait permettre de situer différentes composantes les unes par rapport aux autres

D'OÙ VIENNENT LES PRÉOCCUPATIONS DES ENSEIGNANTS

Si les obstacles s'inscrivent dans un système, 3 niveaux semblent alimenter les préoccupations des enseignants (DeBlois et Barma, 2017):

- 1. En classe: tension entre réussir et comprendre, entre le temps d'apprentissage et le temps d'enseignement
- Dans l'organisation scolaire: collaboration avec les enseignants du degré suivant
- Dans la communauté: tension entre collaborer avec les parents et négocier avec les parents, notamment sur le sens et le rôle de l'erreur

QUELLES CONDITIONS METTRE EN ŒUVRE

- Adhérer à une représentation partagée des problèmes rencontrés (interprétation)
- Prendre conscience que pour choisir des situations à proposer aux élèves, il devient nécessaire de partager des enjeux comme la place de l'erreur dans le processus d'apprentissage ou le rôle de l'évaluation (DeBlois et Barma, 2017)
- Co-modéliser des outils de communication et de collaboration avec la communauté, l'institution pour revenir enfin vers la classe

QUELLES CONDITIONS METTRE EN OEUVRE

 La recherche en didactique montre en effet qu'il faut parfois déstabiliser fortement des conceptions et des manières de faire déjà acquises. Les petits pas le permettent rarement. Il faut donc parfois mettre l'élève dans des situations qui sont relativement éloignées de ses compétences et de ses conceptions, de manière à le déstabiliser et à créer les conditions d'une prise de conscience, nécessaire à sa transformation et à son évolution » (Vergnaud, 2000).

QUELLES CONDITIONS METTRE EN OEUVRE

- L'erreur fait ainsi partie intégrante de l'apprentissage des mathématiques et il devient judicieux de l'exploiter.
- Une sensibilité à la dualité aide-obstacle influencera les intentions d'enseignement, la planification de situations d'enseignementapprentissage et l'intervention en classe et la nécessité d'interpréter les productions des élèves.

QUELLE FORMATION OFFRIR

QUE SAIT-ON DES CONNAISSANCES DES ÉLÈVES

- Les élèves qui savent représenter des décimaux sur une graduation réussissent mieux la comparaison de nombres (Roditi, 2008)
- Les représentations simultanément des nombres décimaux par la monnaie, la graduation, la droite numérique, sur leur comparaison et sur la mise en relation de la justification et de la représentation a été démontrée (Roditi, , .
- Confronté à un problème auquel la solution était un nombre irrationnel (aire de 8 cm²), les élèves sentent la nécessité des nombres décimaux (Grégoire et al, 2010)

LES PRATIQUES D'ENSEIGNEMENT

- Les méthodes de travail proposées en classe conduisent souvent les enfants à demeurer dans le rôle de l'élève en se conformant à des méthodes de travail proposées et aux consignes (DeBlois, 2015).
- Un des enjeux relevant l'enseignement des mathématiques consisterait à intervenir de manière à ce que l'enfant, devenu élève
 - puisse concevoir les mathématiques pour les jugements, numériques ou géométriques qu'elles proposent, en entrant dans le rôle de l'apprenant.

LES PRATIQUES D'ENSEIGNEMENT: UN EXEMPLE AVEC LES DÉCIMAUX

Identifier un nombre qui succède à 3,14 ou un nombre entre 3,1 et 3,2 pourrait contribuer à:

- Familiariser les élèves avec l'idée d'infini
- Créer une distance entre les nombres naturels et les nombres rationnels pour discuter sur le rôle du zéro, le rôle de la virgule, la généralisation des sous-unités

LES ATTITUDES D'ENSEIGNEMENT

Curiosité à l'égard de l'erreur

- Afin de s'en servir pour construire une compréhension
- Identifier les connaissances manifestées par les élèves (surgénéralisations) plutôt que ce qui manque

LES ATTITUDES D'ENSEIGNEMENT: UN EXEMPLE AVEC LES DÉCIMAUX

- Développer de nouvelles sensibilités
 - La régularité de l'erreur
 - Les procédures de l'élève pour les qualifier de manière à décoder les cheminements cognitifs des élèves
 - Les caractéristiques de la tâche (variables didactiques)
 - Les attentes entretenues par le biais des règles ou des habitudes manifestées

EXERCER UNE VIGILANCE DIDACTIQUE (BUTLEN ET MASSELOT,2015; PÉZARD, 2010)

Planifier devoir faire des ajustements de différentes natures (DeBlois et Maheux, 2005)

Projectives: en utilisant les avancées des élèves

Normatives: en revenant aux tâches planifiées

De retrait: en permettant aux élèves de développer des arguments pour expliquer leurs procédures

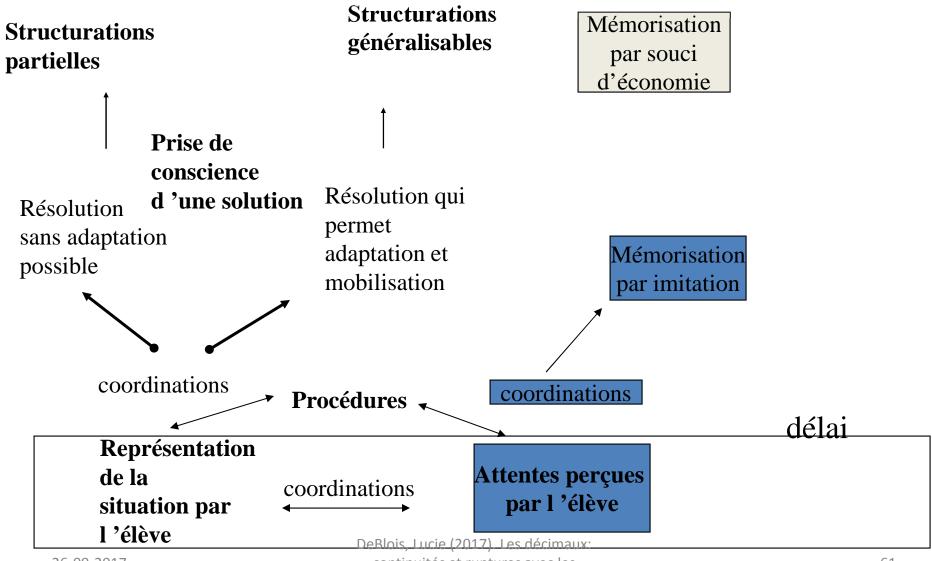
D'évitement: en jouant sur les variables didactiques afin d'éviter certaines erreurs pour mettre d'accent sur l'apprentissage visé

EXERCER UNE VIGILANCE DIDACTIQUE: UN EXEMPLE

Susciter plus d'une représentation d'une même valeur (géométrique, numérique, verbale)

«Pouvez-vous me montrer tout ce qui a permis de représenter cette valeur?»

Distinguer réussir et comprendre en demandant aux élèves:


«Comment avez-vous trouvé?»

L'INTERPRÉTATION POUR GUIDER L'INTERVENTION (DEBLOIS, 2000, 2003)

Confirmer ou infirmer les hypothèses posées relativement aux :

- 1. Procédures utilisées par l'élève
 - Comment a-t-il fait ? Comment a-t-il organisé les données?...
- 2. Représentations que l'élève se donne de la situation
 - Dans quel contexte l'élève a-t-il pu réaliser sa production ? Quelles sont les notions vues antérieurement ? Quelles sont les notions voisines du concept ? Comment l'élève a-t-il pu se représenter le problème ?
- 3. Quelles sont ses attentes compte tenu des règles ou des habitudes manifestées?
- 4. Prises de conscience réalisées par l'élève sur son activité
 - Comment a-t-il interprété le résultat obtenu? Comment explique-t-il la solution trouvée? Ou elles proprééés mathématiques a-t-il reconnues? ...

N MODÈLE D'INTERPRÉTATION

26-09-2017

DES PRINCIPES

- 1. Faire entrer l'élève dans le rôle d'apprenant
- 2. Développer de nouvelles sensibilités chez les enseignants pour exploiter les opportunités
- 3. Exercer une vigilance didactique
- 4. Interpréter les productions des élèves

POUR CONCLURE

Les procédures des élèves ont un sens selon

- les représentations et les conceptions qu'ils entretiennent à l'égard des nombres décimaux
- leurs attentes à l'égard de la tâche

Considérer le sentiment de nécessité ressenti par les élèves comme <u>un préalable</u> à l'apprentissage pourrait susciter l'émergence d'une intention chez les élèves

Références

- Bergeron, j. et Herscovics, N. (1982) Des modèles de compréhension. *Revue des Sciences de l'éducation*, 8 (3). 576-596.
- Brown, C.A., Carpenter, T.P., Kouba, V.L. Lindquist, M.M., Silver, E.A. Swafford, (1988) Secondary School results for the 4th NAEP Mathematics Assessment: Discrete Mathematics, Data Organization and Interpretation, Measurement, Number and Operations. *Mathematics Teacher* 81 (4), 241-248.
- Brousseau, G. (1988). Le contrat didactique: le milieu. *Recherches en didactiques des mathématiques* 9 (3), 309-336.
- DeBlois, L. et Barma, S. (2017). Identification de contradictions dans l'activité d'enseignants du primaire devant l'enseignement de la compétence à résoudre des problèmes mathématiques. Actes du colloque Entre pressions institutionnelles et autonomie du sujet : quelles analyses de l'activité en situation de travail en didactique professionnelle.
- DeBlois, Lucie (2014a) Le rapport aux savoirs pour établir des relations entre troubles de comportements et difficultés d'apprentissage en mathématiques. Dans *Le rapport aux savoirs: Une clé pour analyser les épistémologies enseignantes et les pratiques de la classe*. Cordonné par Marie-Claude Bernard, Annie Savard, Chantale Beaucher. En ligne: http://lel.crires.ulaval.ca/public/le_rapport_aux_savoirs.pdf
- DeBlois L. Larivière, A. (2012) Une analyse du contrat didactique pour interpréter les comportements des élèves au primaire. *Colloque Espace Mathématique Francophone 2012*. http://www.emf2012.unige.ch/
- DeBlois, L. (2010). Et si on pensait les troubles de comportement autrement? *Bulletin du CRIRES*. Nouvelles CSQ. Québec. 6-10. En ligne: http://crires.ulaval.ca/sites/crires/files/roles/membre-crires/no 23 2010.pdf
- DeBlois, L. et Lamothe, D. (2005). Réussite scolaire: comprendre et mieux intervenir. Presses de l'Université Laval,
 Ste-Foy, Québec.

Références

- DeBlois, L., & Roditi, É. (2007, octobre). Élargir les possibles pour intervenir en classe de mathématiques: un exemple de développement professionnel. Communication présentée dans le cadre des Dixièmes rencontres du Réseau international de recherche en éducation et en formation (REF), Sherbrooke, Québec.
- DeBlois, L., & Maheux, J.F. (2005, mai). When things don't go exactly as planned: Leveraging from student teachers' insights to adapted interventions and professional practice. Communication présentée dans le cadre du 15e congrès de l'International Commission on Mathematical Instruction. Aguas De Lindoia, Brésil. http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html
- DeBlois L. (1996). Une analyse conceptuelle de la numération de position au primaire. *Recherches en Didactique des Mathématiques*. Grenoble : Éditions la Pensée Sauvage. France, 16 (1). 71-128.
- Dencuff, M-P. (2010). L'éducation dans la presse: la représentation de l'institution et de ses pratiques.
 Thèse de doctorat. Université Aix-Marseille.
- DOUADY, R. & PERRIN-GLORIAN, M. -J. (1986). Liaison école-collège Nombres décimaux. Brochure n°62.
 Paris: IREM de Paris 7.
- Douady R. (1980) Approche des nombres réels en situation d'apprentissage scolaire (enfants de 6 à 11 ans). Recherches en didactique des mathématiques, 1/1, 77-111.
- Erlwanger, S. H. Benny's Conception of Rules and Answers in IPI Mathematics. *Journal of Children's Mathematical Behavior*, 1(2), 7-25.
- Giguère-Duchesne, A. (2013) Une recension des règles et des habitudes des élèves du deuxième cycle du primaire en mathématiques pour favoriser la réussite scolaire. Mémoire de maîtrise. En ligne : www.theses.ulaval.ca/2013/29861/29861.pdf

Références

- Erlwanger, S. H. Benny's Conception of Rules and Answers in IPI Mathematics. *Journal of Children's Mathematical Behavior*, 1(2), 7-25.
- Giguère-Duchesne, A. (2013) Une recension des règles et des habitudes des élèves du deuxième cycle du primaire en mathématiques pour favoriser la réussite scolaire. Mémoire de maîtrise. En ligne: www.theses.ulaval.ca/2013/29861/29861.pdf Larivière, A., DeBlois, L. (2013) Quelles mathématiques font les élèves qui adoptent des comportements d'évitement en mathématiques? Vivre le primaire 26 (1), 59-61.
- Grégoire, J. Michaux, C. Rouche, N. Desmet, L. Skilbecq, P. Fanuel, J. (2010). L'enseignement et l'apprentissage des nombres décimaux : article de synthèse de la recherche. Centre de Recherche sur l'Enseignement des Mathématiques Nivelles. Repéré à www.enseignement.be/download.php?do id=8057&do check
- Départment of Education and Early Childhood development. (s.d). Les fractions et les nombres décimaux. Repéré à http://www.ed.gov.nl.ca/edu/k12/french/languepremiere/Math/m4/chapitre les fractions.pdf.
- Perrin-alorian, M.J. (1996) Représentation des fractions et des nombres décimaux chez des élèves de cm 2 et du collège. Petit x , 10,
- Roditi, E. (2008) LA COMPARAISON DES NOMBRES DÉCIMAUX COMPRENDRE LES DIFFICULTÉS, AIDER À
 LES SURMONTER. Bulletin de l'APMEP, 477, 479-483. En ligne:
 http://www.apmep.fr/IMG/pdf/CR atelier 78 Roditi.pdf
- Roditi. E. (2003) Les nombres entiers, rationnels et les décimaux.